Prove the following

Question:

If $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be an arbitrary point lying on a plane $\mathrm{P}$ which passes through the point $(42,0,0)(0,42,0)$ and $(0,0,42)$, then the value of expression

$3+\frac{x-11}{(y-19)^{2}(z-12)^{2}}+\frac{y-19}{(x-11)^{2}(z-12)^{2}}$

$+\frac{z-12}{(x-11)^{2}(y-19)^{2}}-\frac{x+y+z}{14(x-11)(y-19)(z-12)}$

 

  1. (1) 0

  2. (2) 3

  3. (3) 39

  4. (4) $-45$


Correct Option: , 2

Solution:

Plane passing through $(42,0,0),(0,42,0)$,

$(0,0,42)$

From intercept from, equation of plane is

$x+y+z=42$

$\Rightarrow(\mathrm{x}-11)+(\mathrm{y}-19)+(\mathrm{z}-12)=0$

let $\quad a=x-11, b=y-19, c=z-12$

$a+b+c=0$

Now, given expression is

$3+\frac{a}{b^{2} c^{2}}+\frac{b}{a^{2} c^{2}}+\frac{c}{a^{2} b^{2}}-\frac{42}{14 a b c}$

$3+\frac{a^{3}+b^{3}+c^{3}-3 a b c}{a^{2} b^{2} c^{2}}$

If $a+b+c=0$

$\Rightarrow a^{3}+b^{3}+c^{3}=3 a b c$

$\Rightarrow 3$

Leave a comment