Show that:
(i) $\sqrt[3]{27} \times \sqrt[3]{64}=\sqrt[3]{27 \times 64}$
(ii) $\sqrt[3]{64 \times 729}=\sqrt[3]{64} \times \sqrt[3]{729}$
(iv) $\sqrt[3]{-125 \times 216}=\sqrt[3]{-125} \times \sqrt[3]{216}$
(v) $\sqrt[3]{-125-1000}=\sqrt[3]{-125} \times \sqrt[3]{-1000}$
(i)
LHS $=\sqrt[3]{27} \times \sqrt[3]{64}=\sqrt[3]{3 \times 3 \times 3} \times \sqrt[3]{4 \times 4 \times 4}=3 \times 4=12$
RHS $=\sqrt[3]{27 \times 64}=\sqrt[3]{3 \times 3 \times 3 \times 4 \times 4 \times 4}=\sqrt[3]{\{3 \times 3 \times 3\} \times\{4 \times 4 \times 4\}}=3 \times 4=12$
Because LHS is equal to RHS, the equation is true.
(ii)
LHS $=\sqrt[3]{64 \times 729}=\sqrt[3]{4 \times 4 \times 4 \times 9 \times 9 \times 9}=\sqrt[3]{\{4 \times 4 \times 4\} \times\{9 \times 9 \times 9\}}=4 \times 9=36$
RHS $=\sqrt[3]{64} \times \sqrt[3]{729}=\sqrt[3]{4 \times 4 \times 4} \times \sqrt[3]{9 \times 9 \times 9}=4 \times 9=36$
Because LHS is equal to RHS, the equation is true.
(iii)
LHS $=\sqrt[3]{-125 \times 216}=\sqrt[3]{-5 \times-5 \times-5 \times\{2 \times 2 \times 2 \times 3 \times 3 \times 3\}}$
$=\sqrt[3]{\{-5 \times-5 \times-5\} \times\{2 \times 2 \times 2\} \times\{3 \times 3 \times 3\}}=-5 \times 2 \times 3=-30$
RHS $=\sqrt[3]{-125} \times \sqrt[3]{216}=\sqrt[3]{-5 \times-5 \times-5} \times \sqrt[3]{\{2 \times 2 \times 2\} \times\{3 \times 3 \times 3\}}=-5 \times(2 \times 3)=-30$
Because LHS is equal to RHS, the equation is true.
(iv)
LHS $=\sqrt[3]{-125 \times-1000}=\sqrt[3]{-5 \times-5 \times-5 \times-10 \times-10 \times-10}$
$=\sqrt[3]{\{-5 \times-5 \times-5\} \times\{-10 \times-10 \times-10\}}=-5 \times-10=50$
RHS $=\sqrt[3]{-125} \times \sqrt[3]{-1000}=\sqrt[3]{-5 \times-5 \times-5} \times \sqrt[3]{\{-10 \times-10 \times-10\}}=-5 \times-10=50$
Because LHS is equal to RHS, the equation is true.