Question:
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
Solution:
The odd integers between 1 and 1000 that are divisible by 3 are:
3, 9, 15, 21...999
Here, we have:
$a=3, d=6$
$a_{n}=999$
$\Rightarrow 3+(n-1) 6=999$
$\Rightarrow 3+6 n-6=999$
$\Rightarrow 6 n=1002$
$\Rightarrow n=167$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow S_{167}=\frac{167}{2}[2 \times 3+(167-1) 6]$
$\Rightarrow S_{167}=\frac{167}{2}[1002]=83667$
Hence proved.