Solve for x :

Question:

Solve for x :

$\tan ^{-1} x=\sin ^{-1} \frac{1}{\sqrt{2}}$

 

Solution:

To find: value of x

Given: $\tan ^{-1} \mathrm{X}=\sin ^{-1} \frac{1}{\sqrt{2}}$

We know that $\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$

Therefore, $\frac{\pi}{4}=\sin ^{-1} \frac{1}{\sqrt{2}}$

Substituting in the given equation,

$\tan ^{-1} x=\frac{\pi}{4}$

$x=\tan \frac{\pi}{4}$

$\Rightarrow x=1$

Therefore, x = 1 is the required value of x.

 

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now