Solve the following


If $\frac{1-i x}{1+i x}=a+i b$, then $a^{2}+b^{2}=$

(a) 1

(b) −1

(c) 0

(d) none of these


(a) 1

$\frac{1-i x}{1+i x}=a+i b$

Taking modulus on both the sides, we get:

$\left|\frac{1-i x}{1+i x}\right|=|a+i b|$

$\Rightarrow \frac{\sqrt{1^{2}+x^{2}}}{\sqrt{1^{2}+x^{2}}}=\sqrt{a^{2}+b^{2}}$


$\Rightarrow \sqrt{a^{2}+b^{2}}=1$

Squaring both the sides, we get:


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now