Question:
If S1 and S2 denote respectively the sum of first 100 natural numbers and the sum of their cubes, then the relation between S1 and S2 is __________.
Solution:
Let
S1 : the sum of first 100 natural numbers
S2 : the sum of their cubes.
$S_{1}=\frac{n(n+1)}{2}=\frac{100(100+1)}{2}$
$S_{1}=5050$
$S_{2}=\left(\frac{n(n+1)}{2}\right)^{2}$
$=\left(\frac{100(100+1)}{2}\right)^{2}$
$=(5050)^{2}$
$S_{2}=S_{1}^{2}$