Solve the following :


A car moving at $40 \mathrm{~km} / \mathrm{h}$ is to be stopped by applying brakes in the next $4.0 \mathrm{~m}$. If the car weighs 2000 $\mathrm{kg}$, what average force must be applied on it?


$u=40 \mathrm{~km} / \mathrm{hr}=\frac{40 \times 1000}{60 \times 60} \mathrm{~m} / \mathrm{s}=\frac{100}{a} \mathrm{~m} / \mathrm{s}$

By law of kinematics,

$v^{2}=u^{2}+2 a s$

$0=\left(\frac{100}{a}\right)^{2}+2 a \cdot 4$


$a=15.432 \mathrm{~m} / \mathrm{s}^{2}$

$F=m a=2000 \times 15.432=3.086 \times 10^{4} \mathrm{~N}$


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now