Solve the following


$\frac{2 x+3}{5}-2<\frac{3(x-2)}{5}$


$\frac{2 x+3}{5}-2<\frac{3(x-2)}{5}$

$\Rightarrow \frac{2 x+3}{5}-\frac{3 x-6}{5}<2 \quad\left[\right.$ Transposing $\frac{3(x-2)}{5}$ to the LHS and $-2$ to the RHS $]$

$\Rightarrow \frac{2 \mathrm{x}+3-3 \mathrm{x}+6}{5}<2$

$\Rightarrow 2 x+3-3 x+6<10 \quad$ [Multiplying both the sides by 5 ]



$\Rightarrow x>-1$     [Multiplying both the sides by $-1]$

Hence, the solution set of the given inequation is $(-1, \infty)$.

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now