Solve the following


If $\left(\frac{1+i}{1-i}\right)^{n}=1$, then $n=$

(a) 2m + 1

(b) 4m

(c) 2m

(d) 4m + 1 where m ∈ N


Given :- $\left(\frac{1+i}{1-i}\right)^{n}=1$

Since, $\frac{1+i}{1-i}=\frac{1+i}{1-i} \times \frac{1+i}{1+i}$


$=\frac{1+i^{2}+2 i}{1+1}$

i. e $\frac{1+i}{1-i}=\frac{1-1+2 i}{2}=\frac{2 i}{2}=2 i$



$\Rightarrow n=4 \mathrm{~m} \quad$ where $m \in N$

Hence, the correct answer is option B.

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now