Question:
If 20Cr = 20Cr + 4 , then rC3 is equal to
(a) 54
(b) 56
(c) 58
(d) none of these
Solution:
(b) 56
$r+r+4=20 \quad\left[\because{ }^{n} C_{x}={ }^{n} C_{y} \Rightarrow n=x+y\right.$ or $\left.x=y\right]$
$\Rightarrow 2 r+4=20$
$\Rightarrow 2 r=16$
$\Rightarrow r=8$
Now, ${ }^{r} C_{3}={ }^{8} C_{3}$
${ }^{8} C_{3}=\frac{8 !}{3 ! 5 !}=\frac{8 \times 7 \times 6}{3 \times 2 \times 1}=56$