Solve the following


Write $-1+i \sqrt{3}$ in polar form


Let $z=-1+\sqrt{3} i$. Then,


Let $\tan \alpha=\left|\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right|$


$\Rightarrow \alpha=\frac{\pi}{3}$

Since the point representing $z$ lies in the second quadrant. Therefore, the argument of $z$ is given by $\theta=\pi-\alpha$


$=\frac{2 \pi}{3}$

So, the polar form is $r(\cos \theta+i \sin \theta)$

$\therefore z=2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now