Question:
A curve is represented by $y=\sin x$. If $x$ is changed from $\frac{\frac{\pi}{3}}{t} t o \frac{\pi}{3}+\frac{\pi}{100}$, find approximately the change in $y$.
Solution:
$y=\sin (x)$
Let $y 1=\sin (\pi / 3)$ and $y 2=\sin (\pi / 3+\pi / 100)$
Change in $y=y 2-y 1=\sin (\pi / 3+\pi / 100)-\sin (\pi / 3)$
$=\sin (\pi / 3+(\pi / 3+\pi / 100-\pi / 3))-\sin (\pi / 3)$
$=0.0157$