Question:
Solve the following quadratic equations by factorization:
$x-\frac{1}{x}=3, x \neq 0$
Solution:
We have been given
$x-\frac{1}{x}=3$
$x^{2}-1=3 x$
$x^{2}-3 x-1=0$
$x^{2}-\left(\frac{3-\sqrt{13}}{2}\right) x-\left(\frac{3+\sqrt{13}}{2}\right) x+\left(\frac{3+\sqrt{13}}{2}\right)\left(\frac{3-\sqrt{13}}{2}\right)=0$
$x\left(x-\left(\frac{3-\sqrt{13}}{2}\right)\right)-\left(\frac{3+\sqrt{13}}{2}\right)\left(x-\left(\frac{3-\sqrt{13}}{2}\right)\right)=0$
$\left[x-\left(\frac{3-\sqrt{13}}{2}\right)\right]\left[x-\left(\frac{3+\sqrt{13}}{2}\right)\right]=0$
Therefore,
$x-\left(\frac{3-\sqrt{13}}{2}\right)=0$
$x=\frac{3-\sqrt{13}}{2}$
or,
$x-\left(\frac{3+\sqrt{13}}{2}\right)=0$
$x=\frac{3+\sqrt{13}}{2}$
Hence, $x=\frac{3-\sqrt{13}}{2}$ or $x=\frac{3+\sqrt{13}}{2}$.