Solve the Following Questions


If $\sqrt{3}\left(\cos ^{2} x\right)=(\sqrt{3}-1) \cos x+1$, the number of solutions of the given equation when $x \in\left[0, \frac{\pi}{2}\right]$ is


$\sqrt{3}(\cos x)^{2}-\sqrt{3} \cos x+\cos x-1=0$

$\Rightarrow(\sqrt{3} \cos x+1)(\cos x-1)=0$

$\Rightarrow \cos x=1$ or $\cos x=-\frac{1}{\sqrt{3}}$ (reject)

$\Rightarrow x=0$ only

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now