solve this


A force $\overrightarrow{\mathrm{F}}=4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$ is applied on an

intersection point of $x=2$ plane and $x$-axis. The magnitude of torque of this force about a point $(2,3,4)$ is . (Round off to the Nearest Integer)


Ans. $(20)$

$\vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}}$

$\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}})-(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})=-3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$

$\& \overrightarrow{\mathrm{F}}=4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$

$\vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 0 & -3 & -4 \\ 4 & 3 & 4\end{array}\right|$


$=-16 \hat{\mathrm{i}}+12 \hat{\mathrm{k}}$

$\therefore \quad|\vec{\tau}|=\sqrt{16^{2}+12^{2}}=20$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now