solve this


$f(x)=x^{3}-6 x^{2}+9 x+15$


Given : $f(x)=x^{3}-6 x^{2}+9 x+15$

$\Rightarrow f^{\prime}(x)=3 x^{2}-12 x+9$

For a local maximum or a local minimum, we must have


$\Rightarrow 3 x^{2}-12 x+9=0$

$\Rightarrow x^{2}-4 x+3=0$


$\Rightarrow x=1$ or 3

Since $f^{\prime}(x)$ changes from negative to positive when $x$ increases through $3, x=3$ is the point of local minima. The local minimum value of $f(x)$ at $x=3$ is given by


Since $f^{\prime}(x)$ changes from positive to negative when $x$ increases through $1, x=1$ is the point of local maxima. The local maximum value of $f(x)$ at $x=1$ is given by


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now