Solve this


Let $f(x)=\left\{\begin{array}{l}\cos x, x \geq 0 \\ x+k, x<0\end{array}\right.$

Find the value of $k$ for which $\lim _{x \rightarrow 0} f(x)$ exist.



Left Hand Limit(L.H.L.):

$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x+k$



Right Hand Limit(R.H.L.):

$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \cos x$

$=\cos (0)$


It is given that $\lim _{x \rightarrow 0} f(x)$ exists. Therefore,

$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)$

$\rightarrow \mathrm{k}=1$


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now