Solve this

Question:

If $\tan (A-B)=\frac{1}{\sqrt{3}}$ and $\tan (A+B)=\sqrt{3}, 0^{\circ}<(A+B)<90^{\circ}$ and $A>B$, then find $A$ and $B$.

 

Solution:

Here, $\tan (A-B)=\frac{1}{\sqrt{3}}$

$\Rightarrow \tan (A-B)=\tan 30^{\circ} \quad\left[\because \tan 30^{\circ}=\frac{1}{\sqrt{3}}\right]$

⇒ A − B = 30o                     ...(i)

Also, $\tan (A+B)=\sqrt{3}$

$\Rightarrow \tan (A+B)=\tan 60^{\circ} \quad\left[\because \tan 60^{\circ}=\sqrt{3}\right]$

⇒ A + B = 60o                           ...(ii)  

Solving (i) and (ii), we get:
A = 45o and B = 15o

 

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now