Solve this

Question:

If $A=\left[\begin{array}{cccc}5 & -2 & 6 & 1 \\ 7 & 0 & 8 & -3 \\ \sqrt{2} & \frac{3}{5} & 4 & 3\end{array}\right]$ then write

i. the number of rows in $\mathrm{A}$,

ii. the number of columns in $A$,

iii. the order of the matrix $\mathbf{A}$,

iv. the number of all entries in A,

v. the elements $a_{23}, a_{31}, a_{14}, a_{33}, a_{22}$ of $A$.

 

Solution:

(i) Number of rows $=3$

(ii) Number of columns $=4$

(iii) Order of matrix $=$ Number of rows $x$ Number of columns $=(3 \times 4)$

(iv) Number of entries $=$ (Number of rows) $\times$ (Number of columns)

$=3 \times 4$

$=12$

(V) $a_{i j}=$ element of $i^{t h}$ row and $j^{t h}$ column

$a_{23}=8$

$a_{31}=\sqrt{2}$

$a_{14}=1$

$a_{33}=4$

$a_{22}=0$

 

Leave a comment