Deepak Scored 45->99%ile with Bounce Back Crack Course. You can do it too!

Solve this following

Question:

Find the value of $(x+y)$ from the following equation :

$2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$

Solution:

Given

$2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$

${\left[\begin{array}{cc}2 & 6 \\ 0 & 2 x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right] }$

${\left[\begin{array}{cc}2+y & 6 \\ 1 & 2 x+2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right] }$

So, $2+y=5$ and $2 x+2=8$

i.e $y=3$ and $x=3$

Therefore, $x+y=6$

Conclusion: Therefore $x+y=6$

 

 

Leave a comment

None
Free Study Material