Question: If $f(x)=[x]-\left[\frac{x}{4}\right], x \in R$, where $[x]$ denotes the
greatest integer function, then :
Both $\lim _{x \rightarrow 4} f(x)$ and $\lim _{x \rightarrow 4+} f(x)$ exist but are not equal
$\lim _{x \rightarrow 4-} f(x)$ exists but $\lim _{x \rightarrow 4+} f(x)$ does not exist
$\lim _{x \rightarrow 4+} f(x)$ exists but $\lim _{x \rightarrow 4-} f(x)$ does not exist
$\mathrm{f}$ is continuous at $x=4$
Correct Option: , 4
Solution:
