Solve this following


Let $S$ be the set of all values of $x$ for which the tangent to the curve $\mathrm{y}=f(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}^{2}-2 \mathrm{x}$ at $(x, y)$ is parallel to the line segment joining the points $(1, f(1))$ and $(-1, f(-1))$, then $\mathrm{S}$ is equal to :

  1. $\left\{-\frac{1}{3},-1\right\}$

  2. $\left\{\frac{1}{3},-1\right\}$

  3. $\left\{-\frac{1}{3}, 1\right\}$

  4. $\left\{\frac{1}{3}, 1\right\}$

Correct Option: , 3





$\frac{d y}{d x}=3 x^{2}-2 x-2$

$3 x^{2}-2 x-2=-1$

$\Rightarrow 3 x^{2}-2 x-1=0$

$\Rightarrow(x-1)(3 x+1)=0$

$\Rightarrow x=1,-\frac{1}{3}$


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now