Solve this following

Question:

Let $f: \mathrm{R} \rightarrow[0, \infty)$ be such that $\lim _{x \rightarrow 5} f(x)$ exists and $\lim _{x \rightarrow 5} \frac{(f(x))^{2}-9}{\sqrt{|x-5|}}=0$. Then $\operatorname{Lim}_{x \rightarrow 5} f(x)$

equal -

  1. 3

  2. 0

  3. 1

  4. 2


Correct Option: , 3

Solution:

Leave a comment