Sum of n terms of the series

Question:

Sum of $n$ terms of the series $\sqrt{2}+\sqrt{8}+\sqrt{18}+\sqrt{32}+\ldots .$ is

(a) $\frac{n(n+1)}{2}$

(b) $2 n(n+1)$

(c) $\frac{n(n+1)}{\sqrt{2}}$

(d) 1

Solution:

(c) $\frac{n(n+1)}{\sqrt{2}}$

Let $T_{n}$ be the $n$th term of the given series.

Thus, we have:

$T_{n}=\sqrt{2 \times n^{2}}=n \sqrt{2}$

Now, let $S_{n}$ be the sum of $n$ terms of the given series.

Thus, we have:

$S_{n}=\sqrt{2} \sum_{k=1}^{n}(k)$

$\Rightarrow S_{n}=\sqrt{2}\left[\frac{n(n+1)}{2}\right]$

$\Rightarrow S_{n}=\frac{n(n+1)}{\sqrt{2}}$

 

Leave a comment