Question:
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
Solution:
Given:
$a_{6}=19$
$\Rightarrow a+(6-1) d=19 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+5 d=19 \quad \ldots(1)$
And, $a_{17}=41$
$\Rightarrow a+(17-1) d=41 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+16 d=41 \quad \ldots(2)$
Solving the two equations, we get,
$16 d-5 d=41-19$
$\Rightarrow 11 d=22$
$\Rightarrow d=2$
Putting $d=2$ in the eqn (1), we get:
$a+5 \times 2=19$
$\Rightarrow a=19-10$
$\Rightarrow a=9$
We know:
$a_{40}=a+(40-1) d \quad\left[a_{n}=a+(n-1) d\right]$
$=a+39 d$
$=9+39 \times 2$
$=9+78=87$