Question:
The area of a rhombus is 84 m2. If its perimeter is 40 m, then find its altitude.
Solution:
Given:
Area of the rhombus $=84 \mathrm{~m}^{2}$
Perimeter $=40 \mathrm{~m}$
Now, we know: Perimeter of the rhombus $=4 \times$ Side
$\therefore 40=4 \times$ Side
Side $=\frac{40}{4}=10 \mathrm{~m}$
Again, we know: Area of the rhombus $=$ Side $\times$ Altitude
$\Rightarrow 84=10 \times$ Altitude
Altitude $=\frac{84}{10}=8.4 \mathrm{~m}$
Hence, the altitude of the rhombus is $8.4 \mathrm{~m}$.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.