The critical angle of a medium for a specific wavelength, if the medium has relative permittivity 3 and relative
The critical angle of a medium for a specific wavelength, if the medium has relative permittivity 3 and relative
permeability $\frac{4}{3}$ for this wavelength, will be:
Correct Option: , 2
(2) Here, from question, relative permittivity
$\varepsilon_{r}=\frac{\varepsilon}{\varepsilon_{0}}=3 \Rightarrow \varepsilon=3 \varepsilon_{0}$
Relative permeability $\mu_{r}=\frac{\mu}{\mu_{0}}=\frac{4}{3} \Rightarrow \mu=\frac{4}{3} \mu_{0}$
$\therefore \mu \varepsilon=4 \mu_{0} \varepsilon_{0}$
$\sqrt{\frac{\mu_{0} \varepsilon_{0}}{\mu \varepsilon}}=\frac{v}{c}=\frac{1}{2}\left(\because c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}\right)$
$n=\sqrt{\mu_{r} \varepsilon_{r}}=\sqrt{\frac{4}{3} \times 3}=2$
And $n=\frac{1}{\sin \theta_{c}}$
$\Rightarrow \sin \theta_{c}=\frac{1}{n}=\frac{1}{2}$
$\therefore$ Critical angle, $\theta_{c}=30^{\circ}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.