Question:
The diameter of a cylinder is 28 cm and its height is 40 cm. Find the curved surface area, total surface area and the volume of the cylinder.
Solution:
Here, r = 28/2 = 14 cm; h = 40 cm
Curved surface area of the cylinder $=2 \pi r h$
$=2 \times \frac{22}{7} \times 14 \times 40 \mathrm{~cm}^{2}$
$=2 \times 22 \times 2 \times 40 \mathrm{~cm}^{2}$
$=3520 \mathrm{~cm}^{2}$
Total surface area of the cylinder $=2 \pi r h+2 \pi r^{2}$
$=\left(3520+2 \times \frac{22}{7} \times 14^{2}\right) \mathrm{cm}^{2}$
$=(3520+1232)=4752 \mathrm{~cm}^{2}$
$\therefore$ Volume of the cylinder $=\pi r^{2} h$
$=\frac{22}{7} \times 14^{2} \times 40 \mathrm{~cm}^{3}$
$=22 \times 14 \times 2 \times 40 \mathrm{~cm}^{3}$
$=24640 \mathrm{~cm}^{3}$