Question:
The difference of two natural numbers is 5 and the difference of their reciprocals is $\frac{5}{14}$. Find the numbers.
Solution:
Let the required natural numbers be x and (x + 5).
Now, x < x + 5
$\therefore \frac{1}{x}>\frac{1}{x+5}$
According to the given condition,
$\frac{1}{x}-\frac{1}{x+5}=\frac{5}{14}$
$\Rightarrow \frac{x+5-x}{x(x+5)}=\frac{5}{14}$
$\Rightarrow \frac{5}{x^{2}+5 x}=\frac{5}{14}$
$\Rightarrow x^{2}+5 x=14$
$\Rightarrow x^{2}+5 x-14=0$
$\Rightarrow x^{2}+7 x-2 x-14=0$
$\Rightarrow x(x+7)-2(x+7)=0$
$\Rightarrow(x+7)(x-2)=0$
$\Rightarrow x+7=0$ or $x-2=0$
$\Rightarrow x=-7$ or $x=2$
∴ x = 2 (−7 is not a natural number)
When x = 2,
x + 5 = 2 + 5 = 7
Hence, the required natural numbers are 2 and 7.