Question:
The differential equation satisfied by the system of parabolas
$y^{2}=4 a(x+a)$ is:
Correct Option: , 3
Solution:
$y^{2}=4 a x+4 a^{2}$
differentiate with respect to $x$
$\Rightarrow 2 y \frac{d y}{d x}=4 a$
$\Rightarrow a=\left(\frac{y}{2} \frac{d y}{d x}\right)$
so, required differential equation is
$y^{2}=\left(4 \times \frac{y}{2} \frac{d y}{d x}\right)^{x+4}\left(\frac{y}{2} \frac{d y}{d x}\right)^{2}$
$\Rightarrow y^{2}\left(\frac{d y}{d x}\right)^{2}+2 x y\left(\frac{d y}{d x}\right)-y^{2}=0$
$\Rightarrow y\left(\frac{d y}{d x}\right)^{2}+2 x\left(\frac{d y}{d x}\right)-y=0$