The distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$ is :
Correct Option: , 2
Equation of line through point $P(1,-2,3)$ and parallel
to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$ is
$\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{-6}=\lambda$
So, any point on line $=Q(2 \lambda+1,3 \lambda-2,-6 \lambda+3)$
Since, this point lies on plane $x-y+2=5$
$\therefore 2 \lambda+1-3 \lambda+2-6 \lambda+3=5 \Rightarrow \lambda=\frac{1}{7}$
$\therefore$ Point of intersection line and plane, $Q=\left(\frac{9}{7}, \frac{11}{7}, \frac{15}{7}\right)$
$\therefore$ Required distance $P Q$
$=\sqrt{\left(\frac{9}{7}-1\right)^{2}+\left(-\frac{11}{7}+2\right)^{2}+\left(\frac{15}{7}-3\right)^{2}}=1$