The following data were obtained during the first order thermal decomposition of SO2Cl2 at a constant volume.
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
Calculate the rate of the reaction when total pressure is 0.65 atm.
The thermal decomposition of SO2Cl2 at a constant volume is represented by the following equation.
After time, $t$, total pressure, $\mathrm{P}_{t}=\left(\mathrm{P}_{0}-p\right)+p+p$
$\Rightarrow \mathrm{P}_{t}=\mathrm{P}_{0}+p$
$\Rightarrow p=\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{0}$
Therefore, $\mathrm{P}_{\mathrm{o}}-p=\mathrm{P}_{\mathrm{o}}-\left(\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathrm{o}}\right)$
= 2 P0 − Pt
For a first order reaction,
$k=\frac{2.303}{t} \log \frac{\mathrm{P}_{0}}{\mathrm{P}_{0}-p}$
$=\frac{2.303}{t} \log \frac{\mathrm{P}_{0}}{2 \mathrm{P}_{0}-\mathrm{P}_{t}}$
When $t=100 \mathrm{~s}, k=\frac{2.303}{100 \mathrm{~s}} \log \frac{0.5}{2 \times 0.5-0.6}$
= 2.231 × 10−3 s−1
When Pt = 0.65 atm,
P0 + p = 0.65
⇒ p = 0.65 − P0
= 0.65 − 0.5
= 0.15 atm
Therefore, when the total pressure is 0.65 atm, pressure of SOCl2 is
$p_{\mathrm{SOCl}_{2}}=\mathrm{P}_{0}-\mathrm{p}$
= 0.5 − 0.15
= 0.35 atm
Therefore, the rate of equation, when total pressure is 0.65 atm, is given by,
Rate $=k\left(p_{\mathrm{SOCl}_{2}}\right)$
= (2.23 × 10−3 s−1) (0.35 atm)
= 7.8 × 10−4 atm s−1