The least value of the function


The least value of the function $\mathrm{f}(\mathrm{x})=x 3-18 x 2+96 x$ in the interval $[0,9]$ is

(a) 126

(b) 135

(c) 160

(d) 0



(d) 0

Given: $f(x)=x^{3}-18 x^{2}+96 x$

$\Rightarrow f^{\prime}(x)=3 x^{2}-36 x+96$

For a local maxima or a local minima, we must have


$\Rightarrow 3 x^{2}-36 x+96=0$

$\Rightarrow x^{2}-12 x+32=0$


$\Rightarrow x=4,8$






Hence, 0 is the minimum value in the range $[0,9]$.

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now