Question:
The lengths of three sides of a triangle are 20 cm, 16 cm and 12 cm. The area of the triangle is
(a) 96 cm2
(b) 120 cm2
(c) 144 cm2
(d) 160 cm2
Solution:
(a) 96 cm2
Let:
$a=20 \mathrm{~cm}, b=16 \mathrm{~cm}$ and $c=12 \mathrm{~cm}$
$s=\frac{a+b+c}{2}=\frac{20+16+12}{2}=24 \mathrm{~cm}$
By Heron's formula, we have :
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{24(24-20)(24-16)(24-12)}$
$=\sqrt{24 \times 4 \times 8 \times 12}$
$=\sqrt{6 \times 4 \times 4 \times 4 \times 4 \times 6}$
$=6 \times 4 \times 4$
$=96 \mathrm{~cm}^{2}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.