The maximum value


The maximum value of $f(x)=x e^{-x}$ is___________


The given function is $f(x)=x e^{-x}$.

$f(x)=x e^{-x}$

Differentiating both sides with respect to x, we get

$f^{\prime}(x)=x \times e^{-x} \times(-1)+e^{-x} \times 1$

$\Rightarrow f^{\prime}(x)=e^{-x}(-x+1)$

For maxima or minima,


$\Rightarrow e^{-x}(-x+1)=0$

$\Rightarrow-x+1=0$    $\left(e^{-x}>0 \forall x \in \mathrm{R}\right)$

$\Rightarrow x=1$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now