Question:
The minimum value of 4x + 41 – x, x ∈ R, is
(a) 2
(b) 4
(c) 1
(d) 0
Solution:
For $4^{x}+4^{1-x}: x \in R$
4x and 41 – x are 2 terms say x and y respectively
Since arithmetic mean ≥ Geometric mean of x and y
i. e $\frac{x+4}{2} \geq \sqrt{x y}$
i. e $\frac{4^{x}+4^{1-x}}{2} \geq \sqrt{4^{x} 4^{1-x}}$
i. e $4^{x}+4^{1-x} \geq 2 \sqrt{4^{x} 4.4^{-x}}$
i. e $4^{x}+4^{1-x} \geq 2 \sqrt{4}$
i. e $4 x+4^{1-x} \geq 4$
∴ minimum value of 4x + 41 – x is 4
Hence, the correct answer is option B.