The point on the x-axis which is equidistant from points (−1, 0) and (5, 0) is
(a) (0, 2)
(b) (2, 0)
(c) (3, 0)
(d) (0, 3) [CBSE 2013]
Let A(−1, 0) and B(5, 0) be the given points. Suppose the required point on the x-axis be P(x, 0).
It is given that P(x, 0) is equidistant from A(−1, 0) and B(5, 0).
∴ PA = PB
$\Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2}$
$\Rightarrow[x-(-1)]^{2}+(0-0)^{2}=(x-5)^{2}+(0-0)^{2}$ (Using distance formula)
$\Rightarrow(x+1)^{2}=(x-5)^{2}$
$\Rightarrow x^{2}+2 x+1=x^{2}-10 x+25$
$\Rightarrow 12 x=24$
$\Rightarrow x=2$
Thus, the required point is (2, 0).
Hence, the correct answer is option B.