The ratio between the curved surface area and the total surface area of a right circular cylinder is 1 : 2.
The ratio between the curved surface area and the total surface area of a right circular cylinder is 1 : 2. Find the volume of the cylinder if its total surface area is 616 cm2.
Suppose that the curved surface area and the total surface area of the right circular cylinder are x cm2 and 2x cm2.
Then we have:
2x = 616
x = 308 sq cm
Hence, the curved surface area of the cylinder is 308 sq cm.
Let r cm and h cm be the radius and height of the cylinder, respectively.
Then $2 \pi r h+2 \pi r^{2}=616 \mathrm{~cm}^{2}$ and $2 \pi r h=308 \mathrm{~cm}^{2}$
$\therefore 2 \pi r h+2 \pi r^{2}-2 \pi r h=616-308$
$\Rightarrow 2 \pi r^{2}=308$
$\Rightarrow 2 \times \frac{22}{7} \times r^{2}=308$
$\Rightarrow r^{2}=\frac{308 \times 7}{44}=49$
$\Rightarrow r=7 \mathrm{~cm}$
Now, $2 \pi r h=308 \mathrm{~cm}^{2}$
$\Rightarrow 2 \times \frac{22}{7} \times 7 \times h=308$
$\Rightarrow h=\frac{308}{44}=7 \mathrm{~cm}$
$\therefore$ Volume of the cylinder $=\pi r^{2} h$ cubic $\mathrm{cm}$
$=\frac{22}{7} \times 7^{2} \times 7$
$=1078 \mathrm{~cm}^{3}$