Question:
The real valued function $f(x)=\frac{\operatorname{cosec}^{-1} x}{\sqrt{x-[x]}}$, where $[\mathrm{x}]$ denotes the greatest integer less than or equal to $x$, is defined for all $x$ belonging to:
Correct Option: , 2
Solution:
$f(x)=\frac{\operatorname{cosec}^{-1} x}{\sqrt{\{x\}}}$
Domain $\in(-\infty,-1] \cup[1, \infty)$
$\{x\} \neq 0$ so $x \neq$ integers