The sum of the areas of two squares is 640 m2. If the difference in their perimeters be 64 m, find the sides of the two squares.
Let the length of the side of the first and the second square be $x$ and $y$, respectively.
According to the question:
$x^{2}+y^{2}=640 \quad \ldots$ (i)
Also,
$4 x-4 y=64$
$\Rightarrow x-y=16$
$\Rightarrow x=16+y$
Putting the value of $x$ in (i), we get:
$x^{2}+y^{2}=640$
$\Rightarrow(16+y)^{2}+y^{2}=640$
$\Rightarrow 256+32 y+y^{2}+y^{2}=640$
$\Rightarrow 2 y^{2}+32 y-384=0$
$\Rightarrow y^{2}+16 y-192=0$
$\Rightarrow y^{2}+(24-8) y-192=0$
$\Rightarrow y^{2}+24 y-8 y-192=0$
$\Rightarrow y(y+24)-8(y+24)=0$
$\Rightarrow(y+24)(y-8)=0$
$\Rightarrow y=-24$ or $y=8$
$\therefore y=8 \quad(\because$ Side cannot be negative)
$\therefore x=16+y=16+8=24 \mathrm{~m}$
Thus, the sides of the squares are $8 \mathrm{~m}$ and $24 \mathrm{~m}$.