The sum of the radii of two circles is 140 cm and the difference of their circumferences is 88 cm. Find the diameters of the circles.
Let the radius of two circles be $r_{1} \mathrm{~cm}$ and $r_{2} \mathrm{~cm}$ respectively. Then their circumferences are $C_{1}=2 \pi r_{1} \mathrm{~cm}$ and $C_{2}=2 \pi r_{2} \mathrm{~cm}$ respectively and their areas are $A_{1}=\pi r_{1}^{2} \mathrm{~cm}^{2}$ and $A_{2}=\pi r_{2}^{2} \mathrm{~cm}^{2}$ respectively.
It is given that the sum of the radii of two circles is 140 cm and difference of their circumferences is 88 cm. So,
$r_{1}+r_{2}=140 \mathrm{~cm} \ldots \ldots(\mathrm{A})$
$C_{1}-C_{2}=88 \mathrm{~cm}$
$2 \pi r_{1}-2 \pi r_{2}=88 \mathrm{~cm}$
$2 \pi\left(r_{1}-r_{2}\right)=88 \mathrm{~cm}$
$r_{1}-r_{2}=\frac{88}{2 \pi} \mathrm{cm}$
$r_{1}-r_{2}=\frac{88}{2 \times \frac{22}{7}} \mathrm{~cm}$
$r_{1}-r_{2}=\frac{88 \times 7}{44} \mathrm{~cm}$
$r_{1}-r_{2}=14 \mathrm{~cm}$..........(B)
Now, solving (A) and (B)
$r_{1}=77 \mathrm{~cm}$
$r_{2}=63 \mathrm{~cm}$
Thus diameters of circles are,
$2 r_{1}=154 \mathrm{~cm}$
$2 r_{2}=126 \mathrm{~cm}$