The sum of the series 12 + 32 + 52 + ... to n terms is
(a) $\frac{n(n+1)(2 n+1)}{2}$
(b) $\frac{n(2 n-1)(2 n+1)}{3}$
(c) $\frac{(n-1)^{2}(2 n+1)}{6}$
(d) $\frac{(2 n+1)^{3}}{3}$
(b) $\frac{n(2 n-1)(2 n+1)}{3}$
Let $T_{n}$ be the $n$th term of the given series.
Thus, we have:
$T_{n}=(2 n-1)^{2}=4 n^{2}+1-4 n$
Now, let $S_{n}$ be the sum of $n$ terms of the given series.
Thus, we have:
$S_{n}=\sum_{k=1}^{n}\left(4 k^{2}+1-4 k\right)$
$\Rightarrow S_{n}=4 \sum_{k=1}^{n} k^{2}+\sum_{k=1}^{n} 1-4 \sum_{k=1}^{n} k$
$\Rightarrow S_{n}=\frac{4 n(n+1)(2 n+1)}{6}+n-\frac{4 n(n+1)}{2}$
$\Rightarrow S_{n}=\frac{2 n(n+1)(2 n+1)}{3}+n-2 n(n+1)$
$\Rightarrow S_{n}=n\left[\frac{2(n+1)(2 n+1)}{3}+1-2(n+1)\right]$
$\Rightarrow S_{n}=\frac{n}{3}[(2 n+2)(2 n+1)+3-6(n+1)]$
$\Rightarrow S_{n}=\frac{n}{3}\left[\left(4 n^{2}-1\right)\right]$
$\Rightarrow S_{n}=\frac{n(2 n-1)(2 n+1)}{3}$