Question:
Using binomial theorem determine which number is larger (1.2)4000 or 800?
Solution:
We have:
$(1.2)^{4000}=(1+0.2)^{4000}$
$={ }^{4000} C_{0}+{ }^{4000} C_{1} \times(0.2)^{1}+{ }^{4000} C_{2} \times(0.2)^{2}+\ldots{ }^{4000} C_{4000} \times(0.2)^{4000}$
$=1+4000 \times 0.2+$ other positive terms
$=1+800+$ other positive terms
$=801+$ other positive terms
$\because 801>800$
Hence, (1.2)4000 is greater than 800