Question:
Using binomial theorem, prove that $2^{3 n}-7 n-1$ is divisible by 49 , where $n \in N$.
Solution:
$2^{3 n}-7 n-1=8^{n}-7 n-1$ ...(i)
Now,
$8^{n}=(1+7)^{n}$
$={ }^{n} C_{0}+{ }^{n} C_{1} \times 7^{1}+{ }^{n} C_{2} \times 7^{2}+{ }^{n} C_{3} \times 7^{3}+{ }^{n} C_{4} \times 7^{4}+\ldots+{ }^{n} C_{n} \times 7^{n}$
$\Rightarrow 8^{n}=1+7 n+49\left[{ }^{n} C_{2}+{ }^{n} C_{3} \times 7^{1}+{ }^{n} C_{4} \times 7^{2}+\ldots+{ }^{n} C_{n} \times 7^{n-2}\right]$
$\Rightarrow 8^{n}-1-7 n=49 \times($ An integer $)$
Now,
$8^{n}-1-7 n$ is divisible by 49
Or,
$2^{3 n}-1-7 n$ is divisible by 49 [From (1)]