Verify the property: x × y = y × x by taking:
(i) $x=-\frac{1}{3}, y=\frac{2}{7}$
(ii) $x=\frac{-3}{5}, y=\frac{-11}{13}$
(iii) $x=2, y=\frac{7}{-8}$
(iv) $x=0, y=\frac{-15}{8}$
We have to verify that $x \times y=y \times x$.
(i) $x=\frac{-1}{3}, y=\frac{2}{7}$
$x \times y=\frac{-1}{3} \times \frac{2}{7}=\frac{-2}{21}$
$y \times x=\frac{2}{7} \times \frac{-1}{3}=\frac{-2}{21}$
$\therefore \frac{-1}{3} \times \frac{2}{7}=\frac{2}{7} \times \frac{-1}{3}$
Hence verified.
(ii) $x=\frac{-3}{5}, y=\frac{-11}{13}$
$\mathrm{x} \times \mathrm{y}=\frac{-3}{5} \times \frac{-11}{13}=\frac{33}{65}$
$y \times x=\frac{-11}{13} \times \frac{-3}{5}=\frac{33}{65}$
$\therefore \frac{-3}{5} \times \frac{-11}{13}=\frac{-11}{13} \times \frac{-3}{5}$
Hence verified.
(iii) $x=2, y=\frac{7}{-8}$
$x \times y=2 \times \frac{7}{-8}=\frac{7}{-4}$
$y \times x=\frac{7}{-8} \times 2=\frac{7}{-4}$
$\therefore 2 \times \frac{7}{-8}=\frac{7}{-8} \times 2$
Hence verified.
$($ iv $) x=0, y=\frac{-15}{8}$
$x \times y=0 \times \frac{-15}{8}=0$
$y \times x=\frac{-15}{8} \times 0=0$
$\therefore 0 \times \frac{-15}{8}=\frac{-15}{8} \times 0$
Hence verified.