Which of the following are quadratic equation in x ?
(i) $x^{2}-x+3=0$
(ii) $2 x^{2}+\frac{5}{2} x-\sqrt{3}=0$
(iii) $\sqrt{2} x^{2}+7 x+5 \sqrt{2}=0$
(iv) $\frac{1}{3} x^{2}+\frac{1}{5} x-2=0$
(v) $x^{2}-3 x-\sqrt{x}+4=0$
(vi) $x-\frac{6}{x}=3$
(vii) $x+\frac{2}{x}=x^{2}$
(viii) $x^{2}-\frac{1}{x^{2}}=5$
(ix) $(x+2)^{3}=x^{3}-8$
(x) $(2 x+3)(3 x+2)=6(x-1)(x-2)$
(xi) $\left(x+\frac{1}{x}\right)^{2}=2\left(x+\frac{1}{x}\right)+3$
i) $\left(x^{2}-x+3\right)$ is a quadratic polynomial.
$\therefore x^{2}-x+3=0$ is a quadratic equation.
ii) $C$ learly, $\left(2 x^{2}+\frac{5}{2} x-\sqrt{3}\right)$ is a quadratic polynomial.
$\therefore 2 x^{2}+\frac{5}{2} x-\sqrt{3}=0$ is a quadratic equation.
iii) Clearly, $\left(\sqrt{2} x^{2}+7 x+5 \sqrt{2}\right)$ is a quadratic polynomial.
$\therefore \sqrt{2} x^{2}+7 x+5 \sqrt{2}=0$ is a quadratic equation.
iv) Clearly, $\left(\frac{1}{3} x^{2}+\frac{1}{5} x-2\right)$ is a quadratic polynomial.
$\therefore \frac{1}{3} x^{2}+\frac{1}{5} x-2=0$ is a quadratic equation.
v) $\left(x^{2}-3 x-\sqrt{x}+4\right)$ contains a term with $\sqrt{x}, i . e, x^{\frac{1}{2}}$, where $\frac{1}{2}$ is not a integer. Therefore, it is not a quadratic polynomial.
$\therefore x^{2}-3 x-\sqrt{x}+4=0$ is not a quadratic equation.
vi) $x-\frac{6}{x}=3$
$\Rightarrow x^{2}-6=3 x$
$\Rightarrow x^{2}-3 x-6=0$
$\left(x^{2}-3 x-6\right)$ is a quadratic polynomial; therefore, the given
equation is quadratic.
vii) $x+\frac{2}{x}=x^{2}$
$\Rightarrow x^{2}+2=x^{3}$
$\Rightarrow x^{3}-x^{2}-2=0$
$\left(x^{3}-x^{2}-2\right)$ is not a quadratic polynomial.
$\therefore x^{3}-x^{2}-2=0$ is not a quadratic equation.
viii) $x^{2}-\frac{1}{x^{2}}=5$
$\Rightarrow x^{4}-1=5 x^{2}$
$\Rightarrow x^{4}-5 x^{2}-1=0$
$\left(x^{4}-5 x^{2}-1\right)$ is a polynomial with degree 4 .
$\therefore x^{4}-5 x^{2}-1=0$ is not a quadratic equation.
(ix) $(x+2)^{3}=x^{3}-8$
$\Rightarrow x^{3}+6 x^{2}+12 x+8=x^{3}-8$
$\Rightarrow 6 x^{2}+12 x+16=0$
This is of the form ax2 + bx + c = 0.
Hence, the given equation is a quadratic equation.
(x) $(2 x+3)(3 x+2)=6(x-1)(x-2)$
$\Rightarrow 6 x^{2}+4 x+9 x+6=6\left(x^{2}-3 x+2\right)$
$\Rightarrow 6 x^{2}+13 x+6=6 x^{2}-18 x+12$
$\Rightarrow 31 x-6=0$
This is not of the form ax2 + bx + c = 0.
Hence, the given equation is not a quadratic equation.
(xi) $\left(x+\frac{1}{x}\right)^{2}=2\left(x+\frac{1}{x}\right)+3$
$\Rightarrow\left(\frac{x^{2}+1}{x}\right)^{2}=2\left(\frac{x^{2}+1}{x}\right)+3$
$\Rightarrow\left(x^{2}+1\right)^{2}=2 x\left(x^{2}+1\right)+3 x^{2}$
$\Rightarrow x^{4}+2 x^{2}+1=2 x^{3}+2 x+3 x^{2}$
$\Rightarrow x^{4}-2 x^{3}-x^{2}-2 x+1=0$
This is not of the form ax2 + bx + c = 0.
Hence, the given equation is not a quadratic equation.