Write the points where $f(x)=\left|\log _{e} x\right|$ is not differentiable.
Given: $f(x)=\left|\log _{e} x\right|= \begin{cases}-\log _{e} x, & 0 Clearly $f(x)$ is differentiable for all $x>1$ and for all $x<1$. So, we have to check the differentiability at $x=1$. We have, (LHD at $x=1$ ) $\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}$ $=\lim _{x \rightarrow 1^{-}} \frac{-\log x-\log 1}{x-1}$ $=-\lim _{x \rightarrow 1^{-}} \frac{\log x}{x-1}$ $=-\lim _{h \rightarrow 0} \frac{\log (1-h)}{1-h-1}$ $=-\lim _{h \rightarrow 0} \frac{\log (1-h)}{-h}$ $=-1$ (RHD at x=1) $=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}$ $=\lim _{x \rightarrow 1^{+}} \frac{\log x-\log 1}{x-1}$ $=\lim _{x \rightarrow 1^{+}} \frac{\log x}{x-1}$ $=\lim _{h \rightarrow 0} \frac{\log (1+h)}{1+h-1}$ $=\lim _{h \rightarrow 0} \frac{\log (1+h)}{h}$ $=1$ Thus, $(\mathrm{LHD}$ at $x=1) \neq(\mathrm{RHD}$ at $x=1)$ So, $f(x)$ is not differentiable at $x=1$.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.