Question: Write the value of $\arg (z)+\arg (\bar{z})$
Solution:
Let z be a complex number with argument θ.
Then,
$z=r e^{i \theta}$
$\Rightarrow \bar{z}=\overline{r e^{i \theta}}=r e^{-i \theta}$
$\Rightarrow$ argument of $\bar{z}$ is $-\theta$
Thus, $\arg (z)+\arg (\bar{z})=0$.