Trigonometric Equation – JEE Advanced Previous Year Questions with Solutions


JEE Advanced Previous Year Questions of Math with Solutions are available at eSaral. Practicing JEE Advanced Previous Year Papers Questions of mathematics will help the JEE aspirants in realizing the question pattern as well as help in analyzing weak & strong areas. eSaral helps the students in clearing and understanding each topic in a better way. eSaral also provides complete chapter-wise notes of Class 11th and 12th both for all subjects. Besides this, eSaral also offers NCERT Solutions, Previous year questions for JEE Main and Advance, Practice questions, Test Series for JEE Main, JEE Advanced and NEET, Important questions of Physics, Chemistry, Math, and Biology and many more. Download eSaral app for free study material and video tutorials.
Q. The number of values of $\theta$ in the interval $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq \frac{n \pi}{5}$ for $n=0, \pm 1, \pm 2$ and $\tan \theta=\cot 5 \theta$ as well as $\sin 2 \theta=\cos 4 \theta,$ is [JEE 2010, 3]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. 3

Q. The positive integer value of n > 3 satisfying the equation $\frac{1}{\sin \left(\frac{\pi}{\mathrm{n}}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{\mathrm{n}}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{\mathrm{n}}\right)}$ is [JEE 2011, 4]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. 7 $\frac{1}{\sin \frac{\pi}{\mathrm{n}}}=\frac{1}{\sin \frac{2 \pi}{\mathrm{n}}}+\frac{1}{\sin \frac{3 \pi}{\mathrm{n}}}$ $\Rightarrow \frac{1}{\sin \frac{\pi}{\mathrm{n}}}-\frac{1}{\sin \frac{3 \pi}{\mathrm{n}}}=\frac{1}{\sin \frac{2 \pi}{\mathrm{n}}}$ $\Rightarrow \frac{\sin \frac{3 \pi}{n}-\sin \frac{\pi}{n}}{\sin \frac{\pi}{n} \sin \frac{3 \pi}{n}}=\frac{1}{\sin \frac{2 \pi}{n}}$ $\Rightarrow \frac{2 \cos \frac{2 \pi}{\mathrm{n}} \sin \frac{\pi}{\mathrm{n}}}{\sin \frac{\pi}{\mathrm{n}} \sin \frac{3 \pi}{\mathrm{n}}}=\frac{1}{\sin \frac{2 \pi}{\mathrm{n}}}$ $\Rightarrow 2 \cos \frac{2 \pi}{\mathrm{n}} \sin \frac{2 \pi}{\mathrm{n}}=\sin \frac{3 \pi}{\mathrm{n}}$ $\Rightarrow \sin \frac{4 \pi}{\mathrm{n}}=\sin \frac{3 \pi}{\mathrm{n}} \Rightarrow \frac{4 \pi}{\mathrm{n}}=\mathrm{K} \pi+(-1)^{\mathrm{K}} \frac{3 \pi}{\mathrm{n}}$ If $\mathrm{K}=2 \mathrm{m} \quad \Rightarrow \quad \frac{\pi}{\mathrm{n}}=2 \mathrm{m} \pi$ $\Rightarrow \quad n=\frac{1}{2 m} \quad \Rightarrow n=\frac{1}{2}, \frac{1}{4}, \frac{1}{6} \ldots \ldots$ If $\mathrm{K}=2 \mathrm{m}+1 \Rightarrow \frac{7 \pi}{\mathrm{n}}=(2 \mathrm{m}+1) \pi$ $\Rightarrow \mathrm{n}=\frac{7}{2 \mathrm{m}+1} \quad \Rightarrow \quad \mathrm{n}=7, \frac{7}{3}, \frac{7}{5} \ldots \ldots$ Possible value of n is 7

Q. Let $\theta, \varphi \in[0,2 \pi]$ be such that $2 \cos \theta(1-\sin \varphi)=\sin ^{2} \theta\left(\tan \frac{\theta}{2}+\cot \frac{\theta}{2}\right) \cos \varphi-1, \tan (2 \pi-\theta)>0$ and $-1<\sin \theta<-\frac{\sqrt{3}}{2} .$ Then $\varphi$ cannot satisfy- (A) $0<\varphi<\frac{\pi}{2}$ (B) $\frac{\pi}{2}<\varphi<\frac{4 \pi}{3}$ (C) $\frac{4 \pi}{3}<\varphi<\frac{3 \pi}{2}$ (D) $\frac{3 \pi}{2}<\varphi<2 \pi$ [JEE 2012, 4M]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (A,C,D)

Q. For $\mathrm{x} \in(0, \pi),$ the equation $\sin \mathrm{x}+2 \sin 2 \mathrm{x}-\sin 3 \mathrm{x}=3 \mathrm{has}$ (A) infinitely many solutions (B) three solutions (C) one solution (D) no solution [JEE(Advanced)-2014, 3(–1)]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (D)

Q. The number of distinct solutions of equation $\frac{5}{4} \cos ^{2} 2 x+\cos ^{4} x+\sin ^{4} x+\cos ^{6} x+\sin ^{6} x=2$ in the interval $[0,2 \pi]$ is [JEE 2015, 4M, –0M]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. 8

Q. Let $S=\left\{x \in(-\pi, \pi): x \neq 0, \pm \frac{\pi}{2}\right\} .$ The sum of all distinct solution of the equation $\sqrt{3} \sec x+\csc x+2(\tan x-\cot x)=0$ in the set $S$ is equal to $-$ (A) $-\frac{7 \pi}{9}$ (B) $-\frac{2 \pi}{9}$ (C) 0 (D) $\frac{5 \pi}{9}$ [JEE(Advanced)-2016]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (C) $\sqrt{3} \sin x+\cos x=2 \cos 2 x$ $\Rightarrow \cos 2 x=\cos \left(x-\frac{\pi}{3}\right)$ $\Rightarrow 2 x=2 n \pi \pm\left(x-\frac{\pi}{3}\right)$ $\quad \quad x=(6 n-1) \frac{\pi}{3}$ or $(6 n+1) \frac{\pi}{9}$ $\Rightarrow x=-\frac{\pi}{3}, \frac{\pi}{9}, \frac{7 \pi}{9}$ and $-\frac{5 \pi}{9}$ in $(-\pi, \pi)$ $\Rightarrow \operatorname{sum}=0$

Q. Let $a, b, c$ be three non-zero real numbers such that the equation $\sqrt{3} a \cos x+2 b \sin x=c, \quad x$ $\in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ has two distinct real roots $\alpha$ and $\beta$ with $\alpha+\beta=\frac{\pi}{3} .$ Then the value of $\frac{b}{a}$ is $-$ $=$ [JEE(Advanced)-2018]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. 0.5

Administrator

Leave a comment

Please enter comment.
Please enter your name.


Comments
  • February 18, 2021 at 8:39 pm

    Nice question but those can be solved by further methods so not harder

    1
  • November 28, 2020 at 9:07 am

    Great ! Thanks for it .

    0
  • November 5, 2020 at 8:48 pm

    LIKE A BAWWS!!!

    13
  • September 24, 2020 at 9:07 am

    Problems are tough but thanks for providing these questions for practiseπŸ™πŸ™πŸ™

    0
  • August 11, 2020 at 10:56 am

    Nice questions thank you

    1
  • June 27, 2020 at 11:20 am

    πŸ‘Œβ£οΈπŸ‘Œ

    0
    • October 23, 2020 at 11:21 am

      Easy

      0
  • April 20, 2020 at 11:33 am

    good

    0