
Horizontal Projectile Motion
Suppose a body is thrown horizontally from point $\mathrm{O}$, with velocity $\mathrm{u}$. Height of $\mathrm{O}$ from ground $=\mathrm{H}$. Let $X$-axis be along horizontal and $Y$-axis be vertically downwards and origin $O$ is at point of projection as shown in fig.

Distance traveled along X-axis at time t with uniform velocity
i.e. velocity of projection and without acceleration.
i.e. velocity of projection and without acceleration.
The horizontal component of velocity $v_{x}=u$
and horizontal displacement $x=u, t$ ...(i)
displacement along the vertical direction is y to calculate $y$, consider the vertical motion of the projectile initial velocity in vertical direction $u_{y}=0$.
acceleration along y direction $\mathrm{a}_{\mathrm{y}}=\mathrm{g}$ (acc. due to gravity)
So $\quad v_{y}=a_{y} t \quad$ ( $y$ comp. of velocity at time t)
or $\quad v_{y}=g t \quad$ (as..(ii) $\quad$ (as body were dropped from a height)
Resultant velocity at time $t$ is $\vec{v}=u \hat{i}+(g t) \hat{j}$
$v=\sqrt{u^{2}+(g t)^{2}}$
or $\quad y=\frac{1}{2} g \cdot\left(\frac{x}{u}\right)^{2}$ [from equation (i) $t=\frac{x}{u}$]
or $\quad y=\frac{g}{2 u^{2}} \cdot x^{2}$
or $\quad y=k x^{2}$ here $k=\frac{g}{2 u^{2}}$ ( $k$ is constant)
This is eqn. of a parabola.
A body thrown horizontally from a certain height above the ground follows a parabolic trajectory till it hits the ground.
(i) Time of flight $\mathrm{T}=\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}$ [as $\mathrm{y}=\frac{1}{2} \mathrm{gt}^{2}, \mathrm{~T}=\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}$ ]
(ii) Range $\Rightarrow$ horizontal distance covered $=\mathrm{R}$.
$\mathrm{R}=\mathrm{u} \times$ time of flight
$\mathrm{R}=\mathrm{u} \cdot \sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}$ [ $\because H=\frac{g}{2 u^{2}} \mathrm{R}^{2}$ ]
(iii) Velocity when it hits the ground $\mathrm{v}_{\mathrm{g}}=\sqrt{\mathrm{u}^{2}+2 \mathrm{gH}}$
Ex. A projectile is fired with a horizontal velocity of $330 \mathrm{~ms}^{-1}$ from the top of a cliff $80 \mathrm{~m}$ high. How long will it take to strike the ground at the base of the cliff? With what velocity will it strike? Neglect air resistance.

'u' $=0, \quad \mathrm{a}=+9.8 \mathrm{~m} / \mathrm{s}^{2}, \quad \mathrm{~S}=80 \mathrm{~m} \mathrm{t}=?$,
Using $S=u t+\frac{1}{2}$ at $^{2}$, we get $80=\frac{1}{2} \times 9.8 t^{2}$
or $\quad \mathrm{t}^{2}=\frac{160}{9.8}=16.33 \quad \Rightarrow \quad \mathrm{t}=4.04 \mathrm{sec}$
Distance from base $R=$ ut $=330 \times 4.04=1333.20 \mathrm{~m}$.
Now, $\quad v_{y}=u_{y}+a_{y} t=9.8 \times 4.04 \mathrm{~ms}^{-1}=39.59 \mathrm{~m} / \mathrm{s}$
Speed $=\sqrt{330^{2}+39.59^{2}}=332.37 \mathrm{~m} / \mathrm{s}$
and $\quad \tan \beta=\frac{39.59}{330}=0.12 \Rightarrow \quad \beta=6.84^{\circ}$
Ex. A bomb is dropped from an aeroplane flying horizontal with a velocity of $720 \mathrm{~km} / \mathrm{h}$ at an altitude of $980 \mathrm{~m}$. After what time, the bomb will hit the ground?
Sol. $t=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2 \times 980}{9.8}} \mathrm{~s}=10 \sqrt{2} \mathrm{sec}=14.14 \mathrm{sec}$
Ex. A horizontal stream of water leaves an opening in the side of a tank. If the opening is $\mathrm{h}$ metre above the ground and the stream hits the ground D metre away, then what is the speed of water as it leaves the tank in terms of $\mathrm{g}$, $\mathrm{h}$ and $\mathrm{D}$ ?
Sol. The given problem is the problem of horizontal projectile. The stream of water shall follow the parabolic path.
Now, $\quad t=\sqrt{\frac{2 h}{g}} ; v=\frac{D}{t}=D \sqrt{\frac{g}{2 h}}$.
Also Read
JEE Physics Notes
To watch Free Learning Videos on JEE by Kota’s top IITian Faculties Install the eSaral App
Free Study Material